Skip to content
Snippets Groups Projects
Commit 9f2f1662 authored by Ann Almgren's avatar Ann Almgren
Browse files

formatting

parent e9951cd6
No related branches found
No related tags found
No related merge requests found
......@@ -12,22 +12,43 @@ In the predictor
#. Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection.
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{*} = (\varepsilon_g \rho_g U)^n + \Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} + \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{*}) + \rho_g g )`
#. Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting
#. Project :math:`U^{*}` by solving
:math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^*`
.. math::(\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} +
\nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{\ast}) + \rho_g g )
#. Project :math:`U^{\ast}` by solving
:math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast}`
then defining
:math:(\varepsilon_g U)^{**} = (\varepsilon_g U)^{*} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
.. math:: (\varepsilon_g U)^{n+1} = (\varepsilon_g U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
and
.. math:: {p_g}^{n+1/2, \ast} = {p_g}^{n-1/2} + \phi
:math:(\varepsilon_g U)^{\ast \ast} = (\varepsilon_g U)^{\ast} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
and
:math:`{p_g}^{n+1/2,*} = {p_g}^{n-1/2} + \phi`
:math:`{p_g}^{n+1/2,\ast} = {p_g}^{n-1/2} + \phi`
In the corrector
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{***} = (\varepsilon_g \rho_g U)^n + \Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{**} + \varepsilon_g \nabla {p_g}^{n+1/2,*} + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{**} + \sum_{part} \beta_p (V_p - {U_g}^{**}) + \rho_g g )`
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}
+ \varepsilon_g \nabla {p_g}^{n+1/2,\ast} + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} +
\sum_{part} \beta_p (V_p - {U_g}^{\ast \ast}) + \rho_g g )
#. Project :math:`U^{***}` by solving
:math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{***}`
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{***}
then defining
:math:(\varepsilon_g U)^{n+1} = (\varepsilon_g U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
.. math:: (\varepsilon_g U)^{n+1} = (\varepsilon_g U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
and
:math:`{p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi`
.. math:: {p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment