Skip to content
Snippets Groups Projects
Commit be61b80e authored by Ann Almgren's avatar Ann Almgren
Browse files

Updated equations

parent dd0deee3
No related branches found
No related tags found
No related merge requests found
...@@ -10,18 +10,18 @@ Thus here we focus on the discretization of the momentum equation ...@@ -10,18 +10,18 @@ Thus here we focus on the discretization of the momentum equation
In the predictor In the predictor
- Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection. - Define :math:`U^{MAC,n}`, the face-centered (staggered) MAC velocity which is used for advection, using :math:`U^n`
- Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting - Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n + .. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} \Delta t \left( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) - \varepsilon_g \nabla {p_g}^{n-1/2}
.. math:: | \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{\ast}) + \rho_g g ) .. math:: \nabla \cdot \tau^n + \sum_p \beta_p (V_p - {U_g}^{\ast}) + \rho_g g \right)
- Project :math:`U^{\ast}` by solving - Project :math:`U^{\ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast} .. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( \varepsilon_g U)^{\ast}+ \varepsilon_g \nabla {p_g}^{n-1/2} \right)
then defining then defining
...@@ -29,28 +29,30 @@ then defining ...@@ -29,28 +29,30 @@ then defining
and and
.. math:: {p_g}^{n+1/2, \ast} = {p_g}^{n-1/2} + \phi .. math:: {p_g}^{n+1/2, \ast} = \phi
In the corrector In the corrector
- Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting - Define :math:`U^{MAC,\ast \ast}` at the "new" time using :math:`U^{\ast \ast}`
- Define a new approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n + .. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast} \Delta t \left( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}
+ \varepsilon_g \nabla {p_g}^{n+1/2,\ast} - \varepsilon_g \nabla {p_g}^{n+1/2,\ast}
.. math:: + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} + .. math:: + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} +
\sum_{part} \beta_p (V_p - {U_g}^{\ast \ast}) + \rho_g g ) \sum_p \beta_p (V_p - {U_g}^{\ast \ast \ast}) + \rho_g g \right)
- Project :math:`U^{\ast \ast \ast}` by solving - Project :math:`U^{\ast \ast \ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast \ast \ast} .. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( (\varepsilon_g U)^{\ast \ast \ast} + \varepsilon_g \nabla {p_g}^{n+1/2,\ast} \right)
then defining then defining
.. math:: U^{n+1} = U^{\ast \ast \ast} - \frac{1}{\rho_g} \nabla \phi .. math:: U^{n+1} = U^{\ast \ast \ast} - \frac{1}{\rho_g} \nabla \phi
and and
.. math:: {p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi .. math:: {p_g}^{n+1/2} = \phi
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment