Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
docs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William D. Fullmer
docs
Commits
be61b80e
Commit
be61b80e
authored
6 years ago
by
Ann Almgren
Browse files
Options
Downloads
Patches
Plain Diff
Updated equations
parent
dd0deee3
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/source/FluidTimeDiscretization.rst
+14
-12
14 additions, 12 deletions
docs/source/FluidTimeDiscretization.rst
with
14 additions
and
12 deletions
docs/source/FluidTimeDiscretization.rst
+
14
−
12
View file @
be61b80e
...
@@ -10,18 +10,18 @@ Thus here we focus on the discretization of the momentum equation
...
@@ -10,18 +10,18 @@ Thus here we focus on the discretization of the momentum equation
In the predictor
In the predictor
- Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection
.
- Define :math:`U^{MAC
,n
}`, the face-centered (staggered) MAC velocity which is used for advection
, using :math:`U^n`
- Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting
- Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +
.. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)
+
\varepsilon_g \nabla {p_g}^{n-1/2}
\Delta t
\left
( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)
-
\varepsilon_g \nabla {p_g}^{n-1/2}
.. math::
|
\nabla \cdot \tau^n + \sum_
{part}
\beta_p (V_p - {U_g}^{\ast}) + \rho_g g )
.. math:: \nabla \cdot \tau^n + \sum_
p
\beta_p (V_p - {U_g}^{\ast}) + \rho_g g
\right
)
- Project :math:`U^{\ast}` by solving
- Project :math:`U^{\ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot
(
\varepsilon_g U)^{\ast}
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot
\left(
\varepsilon_g U)^{\ast}
+ \varepsilon_g \nabla {p_g}^{n-1/2} \right)
then defining
then defining
...
@@ -29,28 +29,30 @@ then defining
...
@@ -29,28 +29,30 @@ then defining
and
and
.. math:: {p_g}^{n+1/2, \ast} =
{p_g}^{n-1/2} +
\phi
.. math:: {p_g}^{n+1/2, \ast} = \phi
In the corrector
In the corrector
- Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting
- Define :math:`U^{MAC,\ast \ast}` at the "new" time using :math:`U^{\ast \ast}`
- Define a new approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n +
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n +
\Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}
\Delta t
\left
( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}
+
\varepsilon_g \nabla {p_g}^{n+1/2,\ast}
-
\varepsilon_g \nabla {p_g}^{n+1/2,\ast}
.. math:: + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} +
.. math:: + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} +
\sum_
{part}
\beta_p (V_p - {U_g}^{\ast \ast}) + \rho_g g )
\sum_
p
\beta_p (V_p - {U_g}^{\ast
\ast
\ast}) + \rho_g g
\right
)
- Project :math:`U^{\ast \ast \ast}` by solving
- Project :math:`U^{\ast \ast \ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast \ast \ast}
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot
\left(
(\varepsilon_g U)^{\ast \ast \ast}
+ \varepsilon_g \nabla {p_g}^{n+1/2,\ast} \right)
then defining
then defining
.. math:: U^{n+1} = U^{\ast \ast \ast} - \frac{1}{\rho_g} \nabla \phi
.. math:: U^{n+1} = U^{\ast \ast \ast} - \frac{1}{\rho_g} \nabla \phi
and
and
.. math:: {p_g}^{n+1/2} =
{p_g}^{n-1/2} +
\phi
.. math:: {p_g}^{n+1/2} = \phi
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment