Works cited

[BvdHK07a]

R. Beestra, M. A. van der Hoef, and J. A.M. Kuipers. Erratum. AIChE Journal, 2007:3020, 2007.

[BvdHK07b]

R. Beetstra, M. A. van der Hoef, and J. A.M. Kuipers. Drag force of intermediate reynolds number flow past mono- and bidisperse arrays of spheres. AIChE Journal, 53:489–501, 2007.

[BG21]

Marsha Berger and Andrew Giuliani. A state redistribution algorithm for finite volume schemes on cut cell meshes. Journal of Computational Physics, 428:109820, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0021999120305945, doi:https://doi.org/10.1016/j.jcp.2020.109820.

[Bri52]

H.C. Brinkman. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20:571, 1952.

[BF10]

R.L. Burden and J.D. Faires. Numerical Analysis. Cengage Learning, 2010. ISBN 9780538733519.

[CL03]

Nian-Sheng Cheng and Adrian Wing-Keung Law. Exponential formula for computing effective viscosity. Powder Technology, 129:156–160, 2003.

[CC87]

Chern, I.-L. and P. Colella. A conservative front tracking method for hyperbolic conservation laws. Technical Report UCRL-97200, Lawrence Livermore National Laboratory, Livermore, CA, 1987.

[CGKM06]

Phillip Colella, Daniel T. Graves, Benjamin J. Keen, and David Modiano. A cartesian grid embedded boundary method for hyperbolic conservation laws. Journal of Computational Physics, 211(1):347–366, 2006. doi:https://doi.org/10.1016/j.jcp.2005.05.026.

[Dev86]

Luc Devroye. General Principles in Random Variate Generation, pages 27–82. Springer New York, New York, NY, 1986. doi:10.1007/978-1-4613-8643-8_2.

[DG90]

Jianmin Ding and Dimitri Gidaspow. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 36(4):523–538, 1990. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690360404, doi:https://doi.org/10.1002/aic.690360404.

[DNP98]

F Ducros, F Nicoud, and Thierry Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex geometries. Numerical Methods for Fluid Dynamics VI, 6:293–299, 1998.

[Ein11]

A Einstein. Eine neue bestimmung der moleküldimensionen. Ann. Physik, 19:289–306, 1911.

[EH12]

M El-Hilo. Nano-particle magnetism with a dispersion of particle sizes. Journal of Applied Physics, 2012.

[EHC12]

M. El-Hilo and R.W. Chantrell. Rationalisation of distribution functions for models of nanoparticle magnetism. Journal of Magnetism and Magnetic Materials, 324(16):2593–2595, 2012. URL: https://www.sciencedirect.com/science/article/pii/S0304885312002132, doi:https://doi.org/10.1016/j.jmmm.2012.02.108.

[GLGP07]

Felice R. Di. Gibilaro L.G., Gallucci K. and Pagliai P. On the apparent viscosity of a fluidized bed. Chemical Engineering Science, 62:294–300, 2007.

[GAB+22]

A. Giuliani, A.S. Almgren, J.B. Bell, M.J. Berger, M.T. Henry de Frahan, and D. Rangarajan. A weighted state redistribution algorithm for embedded boundary grids. Journal of Computational Physics, 464:111305, 2022. doi:https://doi.org/10.1016/j.jcp.2022.111305.

[Gun78]

D. J. Gunn. Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer, 21(4):467–476, 1978.

[KD59]

I.M. Krieger and T.J. Dougherty. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol, 3:137–152, 1959.

[LB00]

D. Lathouwers and J. Bellan. Modeling of dense gas-solid reactive mixtures applied to biomass pyrolysis in a fuidized bed. In Proceedings of the 2000 U.S. DOE Hydrogen Program Review, 141–203. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, 2000.

[Lil66]

D.K. Lilly. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. Technical Report, National Center for Atmospheric Research, Boulder, United States, 1966.

[MP56]

Samuel H Maron and Percy E Pierce. Application of ree-eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 11:80–95, 1956.

[NKvandStel+20]

Tim M.J. Nijssen, Hans A.M. Kuipers, Jan van der Stel, Allert T. Adema, and Kay A. Buist. Complete liquid-solid momentum coupling for unresolved cfd-dem simulations. International Journal of Multiphase Flow, 132:103425, 2020.

[RM52]

W.E. Ranz and W.R. Marshall. Friction and transfer coefficients for single particles and packed beds. Chemical Engineering Science, 48(5):247–253, 1952.

[RPP87]

R C Reid, J M Prausnitz, and B E Poling. The properties of gases and liquids. McGraw-Hill, 1987. URL: https://www.osti.gov/biblio/6504847.

[Ros52]

R. Roscoe. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3:267, 1952.

[Sma63]

J. Smagorinsky. General circulation experiments with the primitive equations: i. the basic experiment. Monthly Weather Review, 91(3):99 – 164, 1963.

[Sut93]

William Sutherland. Lii. the viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–531, 1893.

[SOBrien88]

M. Syamlal and T.J. O'Brien. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 14(4):473–481, 1988.

[TPK+15]

Y. Tang, E. A. J. F. Peters, J. A. M. Kuipers, S. H. L. Kriebitzsch, and M. A. van der Hoef. A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE Journal, 61(2):688–698, 2015.

[TGS11]

S. Tenneti, R. Garg, and S. Subramaniam. Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow, 37(9):1072–1092, 2011. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.010.

[Wei11]

Bruce B. Weiner. What is particle size distribution weighting: how to get fooled about what was measured and what it means? Technical Report, Brookhaven Instruments, Holtsville, NY, 2011.

[WY66]

C. Y. Wen and Y. H. Yu. Mechanics of fluidization. Chemical Engineering Progress Symposium Series, 62:100–111, 1966.

[WN14]

P. William Navidi. Statistics for Engineers and Scientists. McGraw-Hill Education, 2014. ISBN 9780073401331.

[Zub64]

N. Zuber. On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science, 19(11):897–917, 1964.