Works cited
R. Beestra, M. A. van der Hoef, and J. A.M. Kuipers. Erratum. AIChE Journal, 2007:3020, 2007.
R. Beetstra, M. A. van der Hoef, and J. A.M. Kuipers. Drag force of intermediate reynolds number flow past mono- and bidisperse arrays of spheres. AIChE Journal, 53:489–501, 2007.
Marsha Berger and Andrew Giuliani. A state redistribution algorithm for finite volume schemes on cut cell meshes. Journal of Computational Physics, 428:109820, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0021999120305945, doi:https://doi.org/10.1016/j.jcp.2020.109820.
H.C. Brinkman. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20:571, 1952.
R.L. Burden and J.D. Faires. Numerical Analysis. Cengage Learning, 2010. ISBN 9780538733519.
Nian-Sheng Cheng and Adrian Wing-Keung Law. Exponential formula for computing effective viscosity. Powder Technology, 129:156–160, 2003.
Chern, I.-L. and P. Colella. A conservative front tracking method for hyperbolic conservation laws. Technical Report UCRL-97200, Lawrence Livermore National Laboratory, Livermore, CA, 1987.
Phillip Colella, Daniel T. Graves, Benjamin J. Keen, and David Modiano. A cartesian grid embedded boundary method for hyperbolic conservation laws. Journal of Computational Physics, 211(1):347–366, 2006. doi:https://doi.org/10.1016/j.jcp.2005.05.026.
Luc Devroye. General Principles in Random Variate Generation, pages 27–82. Springer New York, New York, NY, 1986. doi:10.1007/978-1-4613-8643-8_2.
Jianmin Ding and Dimitri Gidaspow. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 36(4):523–538, 1990. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690360404, doi:https://doi.org/10.1002/aic.690360404.
F Ducros, F Nicoud, and Thierry Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex geometries. Numerical Methods for Fluid Dynamics VI, 6:293–299, 1998.
A Einstein. Eine neue bestimmung der moleküldimensionen. Ann. Physik, 19:289–306, 1911.
M El-Hilo. Nano-particle magnetism with a dispersion of particle sizes. Journal of Applied Physics, 2012.
M. El-Hilo and R.W. Chantrell. Rationalisation of distribution functions for models of nanoparticle magnetism. Journal of Magnetism and Magnetic Materials, 324(16):2593–2595, 2012. URL: https://www.sciencedirect.com/science/article/pii/S0304885312002132, doi:https://doi.org/10.1016/j.jmmm.2012.02.108.
Felice R. Di. Gibilaro L.G., Gallucci K. and Pagliai P. On the apparent viscosity of a fluidized bed. Chemical Engineering Science, 62:294–300, 2007.
A. Giuliani, A.S. Almgren, J.B. Bell, M.J. Berger, M.T. Henry de Frahan, and D. Rangarajan. A weighted state redistribution algorithm for embedded boundary grids. Journal of Computational Physics, 464:111305, 2022. doi:https://doi.org/10.1016/j.jcp.2022.111305.
D. J. Gunn. Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer, 21(4):467–476, 1978.
I.M. Krieger and T.J. Dougherty. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol, 3:137–152, 1959.
D. Lathouwers and J. Bellan. Modeling of dense gas-solid reactive mixtures applied to biomass pyrolysis in a fuidized bed. In Proceedings of the 2000 U.S. DOE Hydrogen Program Review, 141–203. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, 2000.
D.K. Lilly. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. Technical Report, National Center for Atmospheric Research, Boulder, United States, 1966.
Samuel H Maron and Percy E Pierce. Application of ree-eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 11:80–95, 1956.
Tim M.J. Nijssen, Hans A.M. Kuipers, Jan van der Stel, Allert T. Adema, and Kay A. Buist. Complete liquid-solid momentum coupling for unresolved cfd-dem simulations. International Journal of Multiphase Flow, 132:103425, 2020.
W.E. Ranz and W.R. Marshall. Friction and transfer coefficients for single particles and packed beds. Chemical Engineering Science, 48(5):247–253, 1952.
R C Reid, J M Prausnitz, and B E Poling. The properties of gases and liquids. McGraw-Hill, 1987. URL: https://www.osti.gov/biblio/6504847.
R. Roscoe. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3:267, 1952.
J. Smagorinsky. General circulation experiments with the primitive equations: i. the basic experiment. Monthly Weather Review, 91(3):99 – 164, 1963.
William Sutherland. Lii. the viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–531, 1893.
M. Syamlal and T.J. O'Brien. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 14(4):473–481, 1988.
Y. Tang, E. A. J. F. Peters, J. A. M. Kuipers, S. H. L. Kriebitzsch, and M. A. van der Hoef. A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE Journal, 61(2):688–698, 2015.
S. Tenneti, R. Garg, and S. Subramaniam. Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow, 37(9):1072–1092, 2011. doi:https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.010.
Bruce B. Weiner. What is particle size distribution weighting: how to get fooled about what was measured and what it means? Technical Report, Brookhaven Instruments, Holtsville, NY, 2011.
C. Y. Wen and Y. H. Yu. Mechanics of fluidization. Chemical Engineering Progress Symposium Series, 62:100–111, 1966.
P. William Navidi. Statistics for Engineers and Scientists. McGraw-Hill Education, 2014. ISBN 9780073401331.
N. Zuber. On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science, 19(11):897–917, 1964.