Multiple Program Multiple Data (MPMD)
The AMReX-MPMD interface is used to send data to another program or application. In order to enable this feature, the executable
has to be built with -DMFIX_MPMD = yes
.
Input parameters controlling the AMReX-MPMD interface are defined in the User Guide run-time inputs section.
Sample Python Program
A sample python script that gathers and plots velocity statistics for the case of fluid flow through a pipe can be found
in tutorials/mpmd/main.py
. The script can be divided into the following sections:
Initialize
Initialize AMReX::MPMD and leverage MPI from
mpi4py
to perform communication split.amr.MPMD_Initialize_without_split([]) app_comm = MPI.COMM_WORLD.Split(amr.MPMD_AppNum(), amr.MPMD_MyProc()) app_world_size = app_comm.Get_size() app_rank = app_comm.Get_rank() amr.initialize_when_MPMD([], app_comm)
Determine the C++ app’s root process
if app_rank == 0: if amr.MPMD_MyProc() == app_rank: # first program other_root = app_comm.Get_size() print(f'other_root = {other_root}')
Create an MPMD::Copier object that gets the BoxArray information from the C++ app.
copr = amr.MPMD_Copier(True)
Receive Once
Receive the
Header
information as a json string on the python root from the C++ root and broadcast to all python ranks.header_json = "" if app_rank == 0: buf = bytearray(10000) # Create a buffer to receive the message MPI.COMM_WORLD.Recv([buf, MPI.CHAR], source=other_root) header_json = buf.decode().strip('\x00') # Decode and strip null characters header_json = app_comm.bcast(header_json, root=0)
Receive all the static
Multifab
data.my_static_data = MyData() for mf in header["data"]["static_mfs"]: my_static_data.define_mf(copr, mf["n"], mf["c"]) my_static_data.copy_mf(copr, mf["n"], mf["c"])
Receive Until End
Receive
End Flag
on the python root from the C++ root and broadcast to all python ranks. If the flag is1
, break out of the loop.if app_rank == 0: int_flags = np.empty(len(header["data"]["int_flags_root"]), dtype='i') MPI.COMM_WORLD.Recv(int_flags, source=other_root) print(f"app_rank = {app_rank}, int_flags = {int_flags})") end = int_flags[0] end = app_comm.bcast(end, root=0) if end == 1: break
Receive
Reals
on the python root from the C++ root and broadcast to all python ranks. Savetime
to an array on the python root for plotting.if app_rank == 0: reals = np.empty(len(header["data"]["reals_root"]), dtype=np.double) MPI.COMM_WORLD.Recv(reals, source=other_root) print(f"app_rank = {app_rank}, reals = {reals})") time = reals[0] time_arr.append(time) time = app_comm.bcast(time, root=0)
Receive
MultiFab
data and store to arrays on the python root as necessary. In this example, thecenterline
u-velocity and the data needed to compute the mean and variance of u-velocity on the centraly-plane
are stored as an array in time.for mf in header["data"]["mfs"]: my_data.copy_mf(copr, mf["n"], mf["c"]) for mfi in my_data.mfs["vel_g"]: bx = mfi.validbox() y_intrst_exists = True z_intrst_exists = True if (j_intrst < bx.small_end[1] or j_intrst > bx.big_end[1]): y_intrst_exists = False if (k_intrst < bx.small_end[2] or k_intrst > bx.big_end[2]): z_intrst_exists = False if (not((y_intrst_exists or z_intrst_exists))): continue ###.............. if ( y_intrst_exists and z_intrst_exists ): np_array = np.array(vel_g_array[0,k_intrst,j_intrst,:]) u_centerline[bx.small_end[0]:bx.small_end[0] + np_array.size] = np_array if (y_intrst_exists): ###.............. y_pl_npts += np.sum(y_volfrac_array) y_pl_u_mn += np.sum(y_vel_g_array[0,:,:]) y_pl_u2_mn += np.sum(y_vel_g_array[0,:,:]*y_vel_g_array[0,:,:]) # Reduce from all python ranks y_pl_npts = app_comm.reduce(y_pl_npts,op=MPI.SUM,root=0) y_pl_u_mn = app_comm.reduce(y_pl_u_mn,op=MPI.SUM,root=0) y_pl_u2_mn = app_comm.reduce(y_pl_u2_mn,op=MPI.SUM,root=0) u_centerline = app_comm.reduce(u_centerline,op=MPI.SUM,root=0) #................... if app_rank == 0: y_pl_u_mn /= y_pl_npts y_pl_u2_mn /= y_pl_npts y_pl_u_mn_arr.append(y_pl_u_mn) y_pl_u_var_arr.append(y_pl_u2_mn-y_pl_u_mn*y_pl_u_mn) u_centerline_arr.append(u_centerline) app_comm.barrier()
Plot
Plot figures on the python root using the collected arrays.
if app_rank == 0: fig, (ax1, ax2, ax3) = plt.subplots(1,3) ax1.plot(time_arr, y_pl_u_mn_arr) ax1.set_title('mean') ax1.set_xlabel('Time (s)') ax2.plot(time_arr, y_pl_u_var_arr) ax2.set_title('var') ax2.set_xlabel('Time (s)') ax3.plot(range(xlen), np.array(u_centerline_arr).mean(axis=0)) ax3.set_title('centerline U (m/s)') ax3.set_xlabel('i') plt.savefig('my_plot.png')
Finalize
Finalize AMReX and AMReX::MPMD.
amr.finalize() amr.MPMD_Finalize()