MFIX  2016-1
kintheory_u_s.f
Go to the documentation of this file.
1 !vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC
2 ! C
3 ! Subroutine: CALC_EXPLICIT_MOM_SOURCE_S C
4 ! Purpose: Determine any additional momentum source terms that are C
5 ! calculated explicitly here C
6 ! C
7 ! C
8 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^C
9 
10  SUBROUTINE calc_explicit_mom_source_s()
11 
12 !-----------------------------------------------
13 ! Modules
14 !-----------------------------------------------
15 
16  USE param1, only: zero
17 
18 ! kinetic theories
19  USE run, only: kt_type_enum
20  USE run, only: ia_2005
21 
22 ! number of solids phases
23  USE physprop, only: smax
24 
25 ! solids source term
27 
28  IMPLICIT NONE
29 !-----------------------------------------------
30 ! Local variables
31 !-----------------------------------------------
32 ! Solids phase index
33  INTEGER :: M
34 !-----------------------------------------------
35 ! Additional interphase interaction terms that arise from kinetic theory
36  DO m = 1, smax
37  ktmom_u_s(:,m) = zero
38  ktmom_v_s(:,m) = zero
39  ktmom_w_s(:,m) = zero
40 
41  IF (kt_type_enum == ia_2005) THEN
42  CALL calc_ia_momsource_u_s(m)
43  CALL calc_ia_momsource_v_s(m)
44  CALL calc_ia_momsource_w_s(m)
45  ENDIF
46  ENDDO
47 
48  RETURN
49  END SUBROUTINE calc_explicit_mom_source_s
50 
51 
52 !vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC
53 ! C
54 ! Subroutine: CALC_IA_MOMSOURCE_U_S C
55 ! Purpose: Determine source terms for U_S momentum equation arising C
56 ! from IA kinetic theory constitutive relations for stress C
57 ! and solids-solids drag (collisional momentum source) C
58 ! C
59 ! Literature/Document References: C
60 ! Idir, Y.H., "Modeling of the multiphase mixture of particles C
61 ! using the kinetic theory approach," PhD Thesis, Illinois C
62 ! Institute of Technology, Chicago, Illinois, 2004 C
63 ! Iddir, Y.H., & H. Arastoopour, "Modeling of multitype particle C
64 ! flow using the kinetic theory approach," AIChE J., Vol 51, C
65 ! No 6, June 2005 C
66 ! C
67 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^C
68 
69  SUBROUTINE calc_ia_momsource_u_s(M)
70 
71 !-----------------------------------------------
72 ! Modules
73 !-----------------------------------------------
74  USE param1, only: half, zero
75  USE constant, only: pi
76 
77 ! trace of D_s at i, j, k
78  USE visc_s, only: trd_s
79 
80 ! number of solids phases
81  USE physprop, only: mmax
82 
83 ! x,y,z-components of solids velocity
84  USE fldvar, only: u_s, v_s, w_s
85 ! particle diameter, bulk density, material density
86  USE fldvar, only: d_p, rop_s, ro_s
87 ! granular temperature
88  USE fldvar, only: theta_m, ep_s
89 ! dilute threshold
90  USE toleranc, only: dil_ep_s
91 
92  Use kintheory
93 
94  USE geometry
95  USE indices
96  USE compar
97  USE fun_avg
98  USE functions
99 
100  IMPLICIT NONE
101 !-----------------------------------------------
102 ! Dummy arguments
103 !-----------------------------------------------
104 ! solids phase index
105  INTEGER, INTENT(IN) :: M
106 !-----------------------------------------------
107 ! Local variables
108 !-----------------------------------------------
109 ! Temporary variable
110  DOUBLE PRECISION :: STRESS_TERMS, DRAG_TERMS
111 ! Indices
112  INTEGER :: I, J, JM, K, KM, IJK, IJKE, IPJK, IP, IMJK, IJKN,&
113  IJKNE, IJKS, IJKSE, IPJMK, IJMK, IJKT, IJKTE,&
114  IJKB, IJKBE, IJKM, IPJKM, &
115  IJPK, IJKP, IM, IJKW
116 ! solids phase index
117  INTEGER :: L
118 ! Viscosity values for stress calculations
119  DOUBLE PRECISION :: MU_sL_pE, MU_sL_pW, MU_sL_pN, MU_sL_pS, MU_sL_pT,&
120  MU_sL_pB, Mu_sL_p
121 ! Bulk viscosity values for calculations
122  DOUBLE PRECISION :: XI_sL_pE, XI_sL_pW, LAMBDA_sL_pE, LAMBDA_sL_pW
123 ! Variables for drag calculations
124  DOUBLE PRECISION :: M_PM, M_PL, D_PM, D_PL, NU_PM_pE, NU_PM_pW, NU_PM_p, &
125  NU_PL_pE, NU_PL_pW, NU_PL_p, T_PM_pE, T_PM_pW, &
126  T_PL_pE, T_PL_pW, Fnu_s_p, FT_sM_p, FT_sL_p
127 ! Average volume fraction
128  DOUBLE PRECISION :: EPSA
129 ! Source terms (Surface)
130  DOUBLE PRECISION :: ssux, ssuy, ssuz, ssx, ssy, ssz, ssbv
131 ! Source terms (Volumetric)
132  DOUBLE PRECISION :: tauzz, DS1, DS2, DS3, DS4, DS1plusDS2
133 !-----------------------------------------------
134 
135 ! section largely based on tau_u_g:
136 
137  DO ijk = ijkstart3, ijkend3
138 
139 ! Skip walls where some values are undefined.
140  IF(wall_at(ijk)) cycle
141 
142  d_pm = d_p(ijk,m)
143  m_pm = (pi/6d0)*d_pm**3 * ro_s(ijk,m)
144 
145  i = i_of(ijk)
146  ijke = east_of(ijk)
147  epsa = avg_x(ep_s(ijk,m),ep_s(ijke,m),i)
148  IF ( .NOT.sip_at_e(ijk) .AND. epsa>dil_ep_s) THEN
149 
150  ip = ip1(i)
151  im = im1(i)
152  ijkw = west_of(ijk)
153  j = j_of(ijk)
154  jm = jm1(j)
155  k = k_of(ijk)
156  km = km1(k)
157  ipjk = ip_of(ijk)
158  imjk = im_of(ijk)
159  ijmk = jm_of(ijk)
160  ijkm = km_of(ijk)
161  ipjmk = jm_of(ipjk)
162  ipjkm = ip_of(ijkm)
163 
164  ijkn = north_of(ijk)
165  ijks = south_of(ijk)
166  ijkne = east_of(ijkn)
167  ijkse = east_of(ijks)
168 
169  ijkt = top_of(ijk)
170  ijkb = bottom_of(ijk)
171  ijkte = east_of(ijkt)
172  ijkbe = east_of(ijkb)
173 
174 ! additional required quantities:
175  ijpk = jp_of(ijk)
176  ijkp = kp_of(ijk)
177 
178 ! initialize variable
179  stress_terms = zero
180  drag_terms = zero
181 
182  DO l = 1,mmax
183  IF (m .ne. l) THEN
184 
185 !--------------------- Sources from Stress Terms ---------------------
186 ! Surface Forces
187 ! standard shear stress terms (i.e. ~diffusion)
188  mu_sl_pe = mu_sl_ip(ijke,m,l)
189  mu_sl_pw = mu_sl_ip(ijk,m,l)
190  ssux = mu_sl_pe*(u_s(ipjk,l)-u_s(ijk,l))*ayz_u(ijk)*odx(ip)&
191  -mu_sl_pw*(u_s(ijk,l)-u_s(imjk,l))*ayz_u(imjk)*odx(i)
192 
193  mu_sl_pn = avg_x_h(avg_y_h(mu_sl_ip(ijk,m,l),mu_sl_ip(ijkn,m,l), j),&
194  avg_y_h(mu_sl_ip(ijke,m,l),mu_sl_ip(ijkne,m,l), j), i)
195  mu_sl_ps = avg_x_h(avg_y_h(mu_sl_ip(ijks,m,l),mu_sl_ip(ijk,m,l), jm),&
196  avg_y_h(mu_sl_ip(ijkse,m,l),mu_sl_ip(ijke,m,l), jm), i)
197  ssuy = mu_sl_pn*(u_s(ijpk,l)-u_s(ijk,l))*axz_u(ijk)*ody_n(j)&
198  -mu_sl_ps*(u_s(ijk,l)-u_s(ijmk,l))*axz_u(ijmk)*ody_n(jm)
199 
200  mu_sl_pt = avg_x_h(avg_z_h(mu_sl_ip(ijk,m,l),mu_sl_ip(ijkt,m,l),k),&
201  avg_z_h(mu_sl_ip(ijke,m,l),mu_sl_ip(ijkte,m,l),k),i)
202  mu_sl_pb = avg_x_h(avg_z_h(mu_sl_ip(ijkb,m,l),mu_sl_ip(ijk,m,l),km),&
203  avg_z_h(mu_sl_ip(ijkbe,m,l),mu_sl_ip(ijke,m,l),km),i)
204  ssuz = mu_sl_pt*(u_s(ijkp,l)-u_s(ijk,l))*axy_u(ijk)*odz_t(k)*ox_e(i)&
205  -mu_sl_pb*(u_s(ijk,l)-u_s(ijkm,l))*axy_u(ijkm)*odz_t(km)*ox_e(i)
206 
207 ! bulk viscosity term
208  xi_sl_pe = xi_sl_ip(ijke,m,l)
209  xi_sl_pw = xi_sl_ip(ijk,m,l)
210  lambda_sl_pe = -(2.d0/3.d0)*mu_sl_pe + xi_sl_pe
211  lambda_sl_pw = -(2.d0/3.d0)*mu_sl_pw + xi_sl_pw
212  ssbv = (lambda_sl_pe*trd_s(ijke,l)-lambda_sl_pw*trd_s(ijk,l))*ayz(ijk)
213 
214 ! off diagonal shear stress terms
215  ssx = ssux
216  ssy = mu_sl_pn*(v_s(ipjk,l)-v_s(ijk,l))*axz_u(ijk)*odx_e(i)&
217  -mu_sl_ps*(v_s(ipjmk,l)-v_s(ijmk,l))*axz_u(ijmk)*odx_e(i)
218  ssz = mu_sl_pt*(w_s(ipjk,l)-w_s(ijk,l))*axy_u(ijk)*odx_e(i)&
219  -mu_sl_pb*(w_s(ipjkm,l)-w_s(ijkm,l))*axy_u(ijkm)*odx_e(i)
220 
221 ! special terms for cylindrical coordinates
222  IF (cylindrical) THEN
223 
224 ! modify Ssz: (1/x) (d/dz) (tau_zz)
225 ! integral of (1/x) (d/dz) (mu*(-w/x))
226 ! (normally part of tau_u_s) - explicit
227  ssz = ssz - (mu_sl_pt*(w_s(ipjk,l)+w_s(ijk,l))*half*ox_e(i)*axy_u(ijk)&
228  -mu_sl_pb*(w_s(ipjkm,l)+w_s(ijkm,l))*half*ox_e(i)*axy_u(ijkm))
229 
230 ! tau_zz/x terms: (tau_zz/x)
231 ! integral of -(2mu/x)*(1/x)*dw/dz
232 ! (normally part of tau_u_s) - explicit
233  mu_sl_p = avg_x(mu_sl_ip(ijk,m,l),mu_sl_ip(ijke,m,l),i)
234  tauzz = -2.d0*mu_sl_p*ox_e(i)*half*(&
235  ((w_s(ipjk,l)-w_s(ipjkm,l))*ox(ip)*odz(k))+&
236  ((w_s(ijk,l)-w_s(ijkm,l))*ox(i)*odz(k)) &
237  ) * vol_u(ijk)
238 
239 ! integral of -(2mu/x)*(1/x)*u
240 ! (normally part of source_u_s)
241  tauzz = tauzz + (-2.d0*mu_sl_p*ox_e(i)*ox_e(i)*&
242  u_s(ijk,l)*vol_u(ijk))
243  ELSE
244  tauzz = zero
245  ENDIF
246 !--------------------- End Sources from Stress Term ---------------------
247 
248 
249 !--------------------- Sources from Momentum Source Term ---------------------
250 ! Momentum source associated with the difference in the gradients in
251 ! number density of solids phase m and all other solids phases
252  d_pl = d_p(ijk,l)
253  m_pl = (pi/6.d0)*d_pl**3 * ro_s(ijk,l)
254 
255  nu_pm_pe = rop_s(ijke,m)/m_pm
256  nu_pm_pw = rop_s(ijk,m)/m_pm
257  nu_pm_p = avg_x(nu_pm_pw,nu_pm_pe,i)
258 
259  nu_pl_pe = rop_s(ijke,l)/m_pl
260  nu_pl_pw = rop_s(ijk,l)/m_pl
261  nu_pl_p = avg_x(nu_pl_pw,nu_pl_pe,i)
262 
263  fnu_s_p = avg_x(fnu_s_ip(ijk,m,l),fnu_s_ip(ijke,m,l),i)
264  ds1 = fnu_s_p*nu_pl_p*(nu_pm_pe-nu_pm_pw)*odx_e(i)
265  ds2 = -fnu_s_p*nu_pm_p*(nu_pl_pe-nu_pl_pw)*odx_e(i)
266  ds1plusds2 = ds1 + ds2
267 
268 ! Momentum source associated with the gradient in granular
269 ! temperature of species M
270  t_pm_pe = theta_m(ijke,m)
271  t_pm_pw = theta_m(ijk,m)
272 
273  ft_sm_p = avg_x(ft_sm_ip(ijk,m,l),ft_sm_ip(ijke,m,l),i)
274  ds3 = ft_sm_p*(t_pm_pe-t_pm_pw)*odx_e(i)
275 
276 ! Momentum source associated with the gradient in granular
277 ! temperature of species L
278  t_pl_pe = theta_m(ijke,l)
279  t_pl_pw = theta_m(ijk,l)
280 
281  ft_sl_p = avg_x(ft_sl_ip(ijk,m,l),ft_sl_ip(ijke,m,l),i)
282  ds4 = ft_sl_p*(t_pl_pe-t_pl_pw)*odx_e(i)
283 !--------------------- End Sources from Momentum Source Term ---------------------
284 
285 
286 ! Add the terms
287  stress_terms = stress_terms + ssux + ssuy + ssuz + &
288  ssbv + ssx + ssy + ssz + tauzz
289  drag_terms = drag_terms + (ds1plusds2+ds3+ds4)*vol_u(ijk)
290 
291  ELSE ! if m .ne. L
292 ! for m = l all stress terms should already be handled in existing routines
293 ! for m = l all drag terms should become zero
294  stress_terms = stress_terms + zero
295  drag_terms = drag_terms + zero
296 
297  ENDIF ! if m .ne. L
298  ENDDO ! over L
299 
300  ktmom_u_s(ijk,m) = stress_terms + drag_terms
301  ELSE
302  ktmom_u_s(ijk,m) = zero
303  ENDIF ! dilute
304  ENDDO ! over ijk
305 
306  RETURN
307  END SUBROUTINE calc_ia_momsource_u_s
308 
309 
310 !vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv!
311 ! !
312 ! Subroutine: COLL_MOMENTUM_COEFF_IA !
313 ! Purpose: Compute collisional momentum source terms betweem solids !
314 ! phase M and solids phase L using Iddir Arastoopour (2005) kinetic !
315 ! theory model that are not proportional to the relative velocity !
316 ! between the two phases. Specifically, terms proportional to the !
317 ! gradient in number density and gradient in temperature !
318 ! !
319 ! Literature/Document References: !
320 ! Iddir, Y.H., "Modeling of the multiphase mixture of particles !
321 ! using the kinetic theory approach," PhD Thesis, Illinois !
322 ! Institute of Technology, Chicago, Illinois, 2004 !
323 ! Iddir, Y.H., & H. Arastoopour, "Modeling of Multitype particle !
324 ! flow using the kinetic theory approach," AIChE J., Vol 51, !
325 ! no. 6, June 2005 !
326 ! !
327 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^!
328 
329  SUBROUTINE coll_momentum_coeff_ia(L, M)
331 !-----------------------------------------------
332 ! Modules
333 !-----------------------------------------------
334  USE compar
335  USE constant
336  USE drag
337  USE fldvar
338  USE functions
339  USE geometry
340  USE indices
341  USE kintheory
342  USE param1
343  USE physprop
344  USE rdf
345  USE sendrecv
346 
347  IMPLICIT NONE
348 !-----------------------------------------------
349 ! Dummy arguments
350 !-----------------------------------------------
351 ! Solids phase index
352  INTEGER, INTENT(IN) :: L
353  INTEGER, INTENT(IN) :: M
354 !-----------------------------------------------
355 ! Local variables
356 !-----------------------------------------------
357 ! Indices
358  INTEGER :: IJK
359 ! Particle diameters
360  DOUBLE PRECISION :: D_PM, D_PL
361 ! Sum of particle diameters
362  DOUBLE PRECISION :: DPSUM
363 !
364  DOUBLE PRECISION :: M_PM, M_PL, MPSUM, DPSUMo2, NU_PL, NU_PM
365  DOUBLE PRECISION :: Ap_lm, Dp_lm, Bp_lm
366  DOUBLE PRECISION :: R0p_lm, R3p_lm, R4p_lm, R10p_lm
367  DOUBLE PRECISION :: Fnus_ip, FTsM_ip, FTsL_ip, F_common_term
368 !-----------------------------------------------
369 
370  DO ijk = ijkstart3, ijkend3
371  IF (.NOT.wall_at(ijk)) THEN
372 
373  IF (m == l) THEN
374  fnu_s_ip(ijk,m,l) = zero
375  ft_sm_ip(ijk,m,l) = zero
376  ft_sl_ip(ijk,m,l) = zero
377 
378  ELSE
379  d_pm = d_p(ijk,m)
380  d_pl = d_p(ijk,l)
381  dpsum = d_pl + d_pm
382  m_pm = (pi/6.d0) * d_pm**3 *ro_s(ijk,m)
383  m_pl = (pi/6.d0) * d_pl**3 *ro_s(ijk,l)
384  mpsum = m_pm + m_pl
385  dpsumo2 = dpsum/2.d0
386  nu_pm = rop_s(ijk,m)/m_pm
387  nu_pl = rop_s(ijk,l)/m_pl
388 
389  IF(theta_m(ijk,m) > zero .AND. theta_m(ijk,l) > zero) THEN
390 
391  ap_lm = (m_pm*theta_m(ijk,l)+m_pl*theta_m(ijk,m))/&
392  2.d0
393  bp_lm = (m_pm*m_pl*(theta_m(ijk,l)-theta_m(ijk,m) ))/&
394  (2.d0*mpsum)
395  dp_lm = (m_pl*m_pm*(m_pm*theta_m(ijk,m)+m_pl*theta_m(ijk,l) ))/&
396  (2.d0*mpsum*mpsum)
397 
398  r0p_lm = ( 1.d0/( ap_lm**1.5 * dp_lm**2.5 ) )+ &
399  ( (15.d0*bp_lm*bp_lm)/( 2.d0* ap_lm**2.5 * dp_lm**3.5 ) )+&
400  ( (175.d0*(bp_lm**4))/( 8.d0*ap_lm**3.5 * dp_lm**4.5 ) )
401 
402  r3p_lm = ( 1.d0/( (ap_lm**1.5)*(dp_lm**3.5) ) )+&
403  ( (21.d0*bp_lm*bp_lm)/( 2.d0 * ap_lm**2.5 * dp_lm**4.5 ) )+&
404  ( (315.d0*bp_lm**4)/( 8.d0 * ap_lm**3.5 *dp_lm**5.5 ) )
405 
406  r4p_lm = ( 3.d0/( ap_lm**2.5 * dp_lm**3.5 ) )+&
407  ( (35.d0*bp_lm*bp_lm)/( 2.d0 * ap_lm**3.5 * dp_lm**4.5 ) )+&
408  ( (441.d0*bp_lm**4)/( 8.d0 * ap_lm**4.5 * dp_lm**5.5 ) )
409 
410  r10p_lm = ( 1.d0/( ap_lm**2.5 * dp_lm**2.5 ) )+&
411  ( (25.d0*bp_lm*bp_lm)/( 2.d0* ap_lm**3.5 * dp_lm**3.5 ) )+&
412  ( (1225.d0*bp_lm**4)/( 24.d0* ap_lm**4.5 * dp_lm**4.5 ) )
413 
414  f_common_term = (dpsumo2*dpsumo2/4.d0)*(m_pm*m_pl/mpsum)*&
415  g_0(ijk,m,l)*(1.d0+c_e)*(m_pm*m_pl)**1.5
416 
417 ! Momentum source associated with the difference in the gradients in
418 ! number density of solids phase m and all other solids phases
419  fnus_ip = f_common_term*(pi*dpsumo2/12.d0)*r0p_lm*&
420  (theta_m(ijk,m)*theta_m(ijk,l))**2.5
421 
422 ! Momentum source associated with the gradient in granular temperature
423 ! of solid phase M
424  ftsm_ip = f_common_term*nu_pm*nu_pl*dpsumo2*pi*&
425  (theta_m(ijk,m)**1.5 * theta_m(ijk,l)**2.5) *&
426  ( (-1.5d0/12.d0*r0p_lm)+&
427  theta_m(ijk,l)/16.d0*( (-m_pm*r10p_lm) - &
428  ((5.d0*m_pl*m_pl*m_pm/(192.d0*mpsum*mpsum))*r3p_lm)+&
429  ((5.d0*m_pm*m_pl)/(96.d0*mpsum)*r4p_lm*bp_lm) ) )
430 
431 ! Momentum source associated with the gradient in granular temperature
432 ! of solid phase L ! no need to recompute (sof Aug 30 2006)
433  ftsl_ip = f_common_term*nu_pm*nu_pl*dpsumo2*pi*&
434  (theta_m(ijk,l)**1.5 * theta_m(ijk,m)**2.5) *&
435  ( (1.5d0/12.d0*r0p_lm)+&
436  theta_m(ijk,m)/16.d0*( (m_pl*r10p_lm)+&
437  (5.d0*m_pm*m_pm*m_pl/(192.d0*mpsum*mpsum)*r3p_lm)+&
438  (5.d0*m_pm*m_pl/(96.d0*mpsum) *r4p_lm*bp_lm) ) )
439 
440 
441  fnu_s_ip(ijk,m,l) = fnus_ip
442 
443 ! WARNING: the following two terms have caused some convergence problems
444 ! earlier. Set them to ZERO for debugging in case of converegence
445 ! issues. (sof)
446  ft_sm_ip(ijk,m,l) = ftsm_ip ! ZERO
447  ft_sl_ip(ijk,m,l) = ftsl_ip ! ZERO
448  ELSE
449  fnu_s_ip(ijk,m,l) = zero
450  ft_sm_ip(ijk,m,l) = zero
451  ft_sl_ip(ijk,m,l) = zero
452  ENDIF
453  ENDIF
454  ENDIF
455  ENDDO
456 
457  RETURN
458  END SUBROUTINE coll_momentum_coeff_ia
459 
integer, dimension(:), allocatable ip1
Definition: indices_mod.f:50
double precision, dimension(:,:), allocatable trd_s
Definition: visc_s_mod.f:63
double precision c_e
Definition: constant_mod.f:105
double precision, dimension(:,:), allocatable v_s
Definition: fldvar_mod.f:105
double precision, dimension(:,:,:), allocatable fnu_s_ip
Definition: kintheory_mod.f:38
integer, dimension(:), allocatable i_of
Definition: indices_mod.f:45
integer ijkend3
Definition: compar_mod.f:80
double precision, dimension(:,:,:), allocatable mu_sl_ip
Definition: kintheory_mod.f:27
double precision, dimension(:), allocatable ox_e
Definition: geometry_mod.f:143
double precision, dimension(:), allocatable odx
Definition: geometry_mod.f:114
double precision, dimension(:,:,:), allocatable ft_sl_ip
Definition: kintheory_mod.f:43
double precision, dimension(:,:,:), allocatable ft_sm_ip
Definition: kintheory_mod.f:41
double precision, dimension(:,:), allocatable w_s
Definition: fldvar_mod.f:117
subroutine calc_ia_momsource_w_s(M)
Definition: kintheory_w_s.f:19
integer, dimension(:), allocatable im1
Definition: indices_mod.f:50
Definition: drag_mod.f:11
subroutine calc_explicit_mom_source_s()
Definition: kintheory_u_s.f:11
double precision function g_0(IJK, M1, M2)
Definition: rdf_mod.f:240
double precision, dimension(:), allocatable ayz_u
Definition: geometry_mod.f:218
double precision, dimension(:), allocatable ayz
Definition: geometry_mod.f:206
double precision, dimension(:,:), allocatable u_s
Definition: fldvar_mod.f:93
double precision, dimension(:), allocatable axz_u
Definition: geometry_mod.f:220
subroutine calc_ia_momsource_u_s(M)
Definition: kintheory_u_s.f:70
integer, dimension(:), allocatable k_of
Definition: indices_mod.f:47
double precision, dimension(:), allocatable ody_n
Definition: geometry_mod.f:123
double precision, dimension(:,:), allocatable d_p
Definition: fldvar_mod.f:57
subroutine calc_ia_momsource_v_s(M)
Definition: kintheory_v_s.f:19
integer mmax
Definition: physprop_mod.f:19
integer, dimension(:), allocatable j_of
Definition: indices_mod.f:46
double precision, dimension(:), allocatable odx_e
Definition: geometry_mod.f:121
integer, dimension(:), allocatable jm1
Definition: indices_mod.f:51
double precision, dimension(:,:,:), allocatable xi_sl_ip
Definition: kintheory_mod.f:31
double precision, dimension(:,:), allocatable ktmom_v_s
Definition: kintheory_mod.f:76
double precision, dimension(:), allocatable ox
Definition: geometry_mod.f:140
double precision, dimension(:,:), allocatable theta_m
Definition: fldvar_mod.f:149
double precision, dimension(:,:), allocatable ktmom_w_s
Definition: kintheory_mod.f:77
double precision, parameter half
Definition: param1_mod.f:28
Definition: run_mod.f:13
double precision, parameter dil_ep_s
Definition: toleranc_mod.f:24
double precision, dimension(:,:), allocatable ro_s
Definition: fldvar_mod.f:45
integer, dimension(:), allocatable km1
Definition: indices_mod.f:52
double precision, dimension(:), allocatable odz
Definition: geometry_mod.f:118
logical cylindrical
Definition: geometry_mod.f:168
integer ijkstart3
Definition: compar_mod.f:80
double precision function ep_s(IJK, xxM)
Definition: fldvar_mod.f:178
double precision, dimension(:), allocatable vol_u
Definition: geometry_mod.f:224
Definition: rdf_mod.f:11
double precision, dimension(:,:), allocatable rop_s
Definition: fldvar_mod.f:51
integer smax
Definition: physprop_mod.f:22
double precision, parameter pi
Definition: constant_mod.f:158
double precision, dimension(:), allocatable axy_u
Definition: geometry_mod.f:222
double precision, dimension(:), allocatable odz_t
Definition: geometry_mod.f:125
subroutine coll_momentum_coeff_ia(L, M)
double precision, dimension(:,:), allocatable ktmom_u_s
Definition: kintheory_mod.f:75
double precision, parameter zero
Definition: param1_mod.f:27