Liqiang Lu, Yupeng Xu, Tingwen Li, Sofiane Benyahia, “Assessment of different coarse graining strategies to simulate polydisperse gas-solids flow”, Chemical Engineering Science, Volume 179, 2018, Pages 53-63, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2018.01.003.
Type Citation: MFS Publication
William D. Fullmer, Christine M. Hrenya, “Continuum prediction of scale-dependent, anisotropic fluctuating kinetic energy in gas-solid flows”, Chemical Engineering Science, Volume 186, 2018, Pages 84-87, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2018.04.035.
Lu, L. and Benyahia, S. (2018), Method to estimate uncertainty associated with parcel size in coarse discrete particle simulation. AIChE J., 64: 2340-2350. doi:10.1002/aic.16100
Gao, X. , Li, T. and Rogers, W. A. (2018), Assessment of mesoscale solid stress in coarse‐grid TFM simulation of Geldart A particles in all fluidization regimes. AIChE J, 64: 3565-3581. doi:10.1002/aic.16341
Yupeng Xu , Jordan Musser, Tingwen Li, Balaji Gopalan, Rupen Panday, Jonathan Tucker, Greggory Breault, Mary Ann Clarke, and William A. Rogers, “Numerical Simulation and Experimental Study of the Gas–Solid Flow Behavior Inside a Full-Loop Circulating Fluidized Bed: Evaluation of Different Drag Models”, Ind. Eng. Chem. Res., 2018, 57 (2), pp 740–750, doi: 10.1021/acs.iecr.7b03817
Xu, Y.; Shahnam, M.; Fullmer, W. D.; Rogers, W. A., “CFD-Driven Optimization of a Bench-Scale Fluidized Bed Biomass Gasifier using MFiX-TFM and Nodeworks-OT”, NETL-TRS-3-2019; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2019; p 28. DOI: 10.18141/1506664.
Gel A, Vaidheeswaran A, Musser J, Tong CH. Toward the Development of a Verification, Validation, and Uncertainty Quantification Framework for Granular and Multiphase Flows—Part 1: Screening Study and Sensitivity Analysis . ASME. J. Verif. Valid. Uncert. 2018;3(3):031001-031001-12. doi:10.1115/1.4041745.
Liqiang Lu, Sofiane Benyahia, “Chapter Two – Advances in Coarse Discrete Particle Methods With Industrial Applications”, Advances in Chemical Engineering, Volume 53, 2018, Pages 53-151, doi: 10.1016/bs.ache.2017.12.001
Fullmer, W. D.; Webber, J.; VanEssendelft, D. “Parameter Calibration and Uncertainty Quantification via Surrogate Model Optimization for CFD-DEM Modeling of a Small-Scale Slugging Bed”; NETL-TRS-20-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2018; p 24. DOI: 10.18141/1479089.
Ansari, A., Mohaghegh, S., Shahnam, M., Dietiker, J. F., Li, T., and Gel, A. Data Driven Smart Proxy for CFD Application of Big Data Analytics & Machine Learning in Computational Fluid Dynamics, Part Three: Model Building at the Layer Level. United States: N. p., 2018. Web. doi:10.2172/1463895 (https://www.osti.gov/servlets/purl/1463895/)