Ruichao Tian, Jianlin Xie, Shuyan Wang, Xiaowei Li, Haoping Peng, Pengfei Yu, Yueming Guo, ‘3D CFD simulation of wet rough particles hydrodynamics in a pulsed fluidized bed using kinetic theory of rough spheres model’, Advanced Powder Technology, Volume 35, Issue 11, 104680, 2024 https://doi.org/10.1016/j.apt.2024.104680. (https://www.sciencedirect.com/science/article/pii/S092188312400356X)
Archives: Citations
Zhen Wan, Hao Wang, Youjun Lu, ‘Numerical simulation of polydisperse particle segregation based on a bubble-based drag model’, Powder Technology, Volume 431, 119081, 2024 https://doi.org/10.1016/j.powtec.2023.119081. (https://www.sciencedirect.com/science/article/pii/S0032591023008641)
Guoqing Lian, Wenqi Zhong, Coupling CFD-DEM with cohesive force and chemical reaction sub-models for biomass combustion in a fluidized bed, Fuel, Volume 350, 2023, 128858, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2023.128858. (https://www.sciencedirect.com/science/article/pii/S0016236123014710)
Musser J, Almgren AS, Fullmer WD, et al. MFIX-Exa: A path toward exascale CFD-DEM simulations. The International Journal of High Performance Computing Applications. 2022;36(1):40-58. doi:10.1177/10943420211009293. (https://journals.sagepub.com/doi/full/10.1177/10943420211009293)
Roberto Porcu, Jordan Musser, Ann S. Almgren, John B. Bell, William D. Fullmer, Deepak Rangarajan, MFIX-Exa: CFD-DEM simulations of thermodynamics and chemical reactions in multiphase flows, Chemical Engineering Science, Volume 273, 2023, 118614, ISSN 0009-2509, https://doi.org/10.1016/j.ces.2023.118614. (https://www.sciencedirect.com/science/article/pii/S0009250923001707)
Xu, Y.; Shahnam, M.; Rogers, W. A. CFD Simulation of Biomass Pyrolysis Vapor Upgrading over a Pt/TiO2 Catalyst in Fixed and Moving Beds; DOE.NETL-2022.3734; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2022; p 40. https://edx.netl.doe.gov/dataset/cfd-simulation-of-biomass-pyrolysis-vapor-upgrading-over-a-pt-tio2-catalyst-in-fixed-and-moving-beds. DOI: 10.2172/1886683.
Reyes-Urrutia, A.; Venier, C.; Mariani, N.; Nigro, N.; Rodriguez, R.; Mazza, G. A CFD Comparative Study of Bubbling Fluidized Bed Behavior with Thermal Effects Using the Open-Source Platforms MFiX and OpenFOAM. Fluids 2022, 7, 1. https://doi.org/10.3390/fluids7010001
Li, C, Gao, X, Rowan, SL, Hughes, B, Rogers, WA. Measuring binary fluidization of nonspherical and spherical particles using machine learning aided image processing. AIChE J. 2022; 68( 7):e17693. doi:10.1002/aic.17693
Zhang, T. L., Youjun. “Wall-to-bed heat transfer in supercritical water fluidized bed using CFD-DEM,” Particuology Vol. 56, 2021, pp. 113-123. https://doi.org/10.1016/j.partic.2020.10.011. (https://www.sciencedirect.com/science/article/pii/S1674200120301231)
Zheng, H. L., Xianglei; Xuan, Yimin; Song, Chao; Liu, Dachuan; Zhu, Qibin; Zhu, Zhonghui; Gao, Ke; Li, Yongliang; Ding, Yulong. “Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation,” Renewable Energy Vol. 178, 2021, pp. 1353-1369. https://doi.org/10.1016/j.renene.2021.07.026. (https://www.sciencedirect.com/science/article/pii/S0960148121010314)