Search
Close this search box.

Archives: Citations

Biswas, A. A., J. P.; Dutta, S.; Musser, J. M.; Almgren, A. S.; Turton, T. L. “Feature Analysis, Tracking, and Data Reduction: An Application to Multiphase Reactor Simulation MFiX-Exa for In-Situ Use Case,” Computing in Science & Engineering Vol. 23, No. 1, 2021, pp. 75-82. https://doi.org/10.1109/mcse.2020.3016927.

Xi, K. G., Q.; Boyce, C. M. “Comparison of CFD-DEM and TFM simulations of single bubble injection in 3D gas-fluidized beds with MRI results,” Chemical Engineering Science Vol. 243, 2021, p. 116738. https://doi.org/10.1016/j.ces.2021.116738. (https://www.sciencedirect.com/science/article/pii/S0009250921003031)

Sitaraman, H. V., Deepthi; Grout, Ray; Hauser, Thomas; Hrenya, Christine M.; Musser, Jordan. “An error-controlled adaptive time-stepping method for particle advancement in coupled CFD-DEM simulations,” Powder Technology Vol. 379, 2021, pp. 203-216. https://doi.org/10.1016/j.powtec.2020.10.051. (https://www.sciencedirect.com/science/article/pii/S0032591020310007)

Yue, Y. W., Shuai; Shen, Yansong. “CFD-DEM study of mitigation of alternating spout deflection in a spout fluidized bed: A geometry perspective,” Powder Technology Vol. 394, 2021, pp. 278-289. https://doi.org/10.1016/j.powtec.2021.08.041. (https://www.sciencedirect.com/science/article/pii/S0032591021007282)

Yue, Y. Z., Chenxi; Shen, Yansong. “CFD-DEM model study of gas–solid flow in a spout fluidized bed with an umbrella-like baffle,” Chemical Engineering Science Vol. 230, 2021, p. 116234. https://doi.org/10.1016/j.ces.2020.116234. (https://www.sciencedirect.com/science/article/pii/S0009250920307661)

Rückert, F. U. L.-P., Daniel; Theis, Danjana; Kim, Ju Pyo; Schargen, Andre; Zorbach, Ingo; Sohnemann, Jens. “A new Simulation Model for Grate Firing Systems in OpenFOAM,” Energy Vol. 216, 2021, p. 119226. https://doi.org/10.1016/j.energy.2020.119226. (https://www.sciencedirect.com/science/article/pii/S0360544220323331)

Guo, Q. P., Azin; Boyce, Christopher M. “A two fluid modeling study of bubble collapse due to bubble interaction in a fluidized bed,” Chemical Engineering Science Vol. 232, 2021, p. 116377. https://doi.org/10.1016/j.ces.2020.116377. (https://www.sciencedirect.com/science/article/pii/S000925092030909X)

Gao, X. L., L. Q.; Shahnam, M.; Rogers, W. A.; Smith, K.; Gaston, K.; Robichaud, D.; Pecha, M. B.; Crowley, M.; Ciesielski, P. N.; Debiagi, P.; Faravelli, T.; Wiggins, G.; Finney, C. E. A.; Parks, J. E. “Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer,” Chemical Engineering Journal Vol. 418, 2021, p. 12. https://doi.org/10.1016/j.cej.2021.129347. (https://www.sciencedirect.com/science/article/pii/S1385894721009359)

Abide, S., Barboteu, M., Cherkaoui, S., and Dumont, S. “A semi-smooth Newton and Primal–Dual Active Set method for Non-Smooth Contact Dynamics,” Computer Methods in Applied Mechanics and Engineering Vol. 387, 2021, p. 114153. https://doi.org/10.1016/j.cma.2021.114153. (https://www.sciencedirect.com/science/article/pii/S0045782521004849)

Jiang, M. Z., Yu; Yu, Yaxiong; Zhou, Qiang. “A scale-independent modeling method for filtered drag in fluidized gas-particle flows,” Powder Technology Vol. 394, 2021, pp. 1050-1076. https://doi.org/10.1016/j.powtec.2021.08.092. (https://www.sciencedirect.com/science/article/pii/S0032591021007956)